dat.baskerville2012.Rd
Results from 23 studies on the effectiveness of practice facilitation interventions within the primary care practice setting.
dat.baskerville2012
The data frame contains the following columns:
author | character | study author(s) |
year | numeric | publication year |
score | numeric | quality score (0 to 12 scale) |
design | character | study design (cct = controlled clinical trial, rct = randomized clinical trial, crct = cluster randomized clinical trial) |
alloconc | numeric | allocation concealed (0 = no, 1 = yes) |
blind | numeric | single- or double-blind study (0 = no, 1 = yes) |
itt | numeric | intention to treat analysis (0 = no, 1 = yes) |
fumonths | numeric | follow-up months |
retention | numeric | retention (in percent) |
country | character | country where study was conducted |
outcomes | numeric | number of outcomes assessed |
duration | numeric | duration of intervention |
pperf | numeric | practices per facilitator |
meetings | numeric | (average) number of meetings |
hours | numeric | (average) hours per meeting |
tailor | numeric | intervention tailored to the context and needs of the practice (0 = no, 1 = yes) |
smd | numeric | standardized mean difference |
se | numeric | corresponding standard error |
Baskerville et al. (2012) describe outreach or practice facilitation as a "multifaceted approach that involves skilled individuals who enable others, through a range of intervention components and approaches, to address the challenges in implementing evidence-based care guidelines within the primary care setting". The studies included in this dataset examined the effectiveness of practice facilitation interventions for improving some relevant evidence-based practice behavior. The effect was quantified in terms of a standardized mean difference, comparing the change (from pre- to post-intervention) in the intervention versus the comparison group (or the difference from baseline in prospective cohort studies).
Baskerville, N. B., Liddy, C., & Hogg, W. (2012). Systematic review and meta-analysis of practice facilitation within primary care settings. Annals of Family Medicine, 10(1), 63–74. https://doi.org/10.1370/afm.1312
medicine, primary care, standardized mean differences, publication bias, meta-regression
### copy data into 'dat' and examine data
dat <- dat.baskerville2012
dat
#> author year score design alloconc blind itt fumonths retention country outcomes duration
#> 1 Kottke et al. 1992 6 cct 0 1 1 19 83.0 US 2 18
#> 2 McBride et al. 2000 6 rct 0 0 0 18 100.0 US 4 12
#> 3 Stange et al. 2000 6 rct 0 0 0 24 NA US 35 12
#> 4 Lobo et al. 2004 6 rct 1 0 0 21 57.0 NL 16 21
#> 5 Roetzhiem et al. 2005 6 crct 0 1 0 24 100.0 US 3 24
#> 6 Hogg et al. 2008 6 cct 0 0 1 6 87.0 Can 26 12
#> 7 Aspy et al. 2008 6 cct 0 1 0 18 89.0 US 4 18
#> 8 Jaen et al. 2010 6 rct 0 1 0 26 86.0 US 11 26
#> 9 Cockburn et al. 1992 7 rct 0 0 0 3 79.0 Aus 2 2
#> 10 Modell et al. 1998 7 rct 0 0 0 12 100.0 UK 1 12
#> 11 Engels et al. 2006 7 rct 1 0 1 12 92.0 NL 7 5
#> 12 Aspy et al. 2008 7 rct 0 1 0 9 100.0 US 1 9
#> 13 Deitrich et al. 1992 18 rct 0 1 0 12 96.0 NL 16 21
#> 14 Lobo et al. 2002 8 rct 1 0 1 21 100.0 US 10 3
#> 15 Bryce et al. 1995 9 rct 1 1 1 12 93.3 US 4 12
#> 16 Kinsinger et al. 1998 9 rct 1 1 0 18 94.0 US 5 12
#> 17 Solberg et al. 1998 9 rct 1 0 1 22 100.0 US 10 22
#> 18 Lemelin et al. 2001 9 rct 1 1 0 18 98.0 Can 13 18
#> 19 Frijling et al. 2002 9 crct 1 1 1 21 95.0 NL 7 21
#> 20 Frijling et al. 2003 9 crct 1 1 1 21 95.0 NL 12 21
#> 21 Margolis et al. 2004 10 rct 1 1 1 30 100.0 US 4 24
#> 22 Mold et al. 2008 10 rct 1 1 1 6 100.0 US 6 6
#> 23 Hogg et al. 2008 12 rct 1 1 1 13 100.0 Can 53 12
#> pperf meetings hours tailor smd se
#> 1 5.5 30.0 1.00 1 1.01 0.52
#> 2 NA 5.0 1.00 1 0.82 0.46
#> 3 20.0 4.0 1.50 1 0.59 0.23
#> 4 5.0 15.0 1.00 1 0.44 0.18
#> 5 4.0 4.0 1.00 0 0.84 0.29
#> 6 11.0 12.0 1.50 1 0.73 0.29
#> 7 3.0 3.0 6.00 1 1.12 0.36
#> 8 6.0 4.5 6.00 1 0.04 0.37
#> 9 40.0 2.0 0.25 0 0.24 0.15
#> 10 13.0 3.0 1.00 0 0.32 0.40
#> 11 NA 5.0 1.00 1 1.04 0.32
#> 12 6.0 18.0 6.00 1 1.31 0.57
#> 13 20.0 15.0 1.00 1 0.59 0.29
#> 14 8.0 3.0 1.00 1 0.66 0.19
#> 15 12.0 1.0 15.00 0 0.62 0.31
#> 16 13.0 10.0 0.75 1 0.47 0.27
#> 17 11.0 4.0 3.00 1 1.08 0.32
#> 18 8.0 33.0 1.75 1 0.98 0.32
#> 19 20.0 15.0 1.00 0 0.26 0.18
#> 20 20.0 15.0 1.00 1 0.39 0.18
#> 21 11.0 9.0 1.00 1 0.60 0.31
#> 22 8.0 18.0 4.00 1 0.94 0.53
#> 23 14.0 9.0 0.75 1 0.11 0.27
### load metafor package
library(metafor)
### random-effects model
res <- rma(smd, sei=se, data=dat, method="DL")
print(res, digits=2)
#>
#> Random-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of total heterogeneity): 0.02 (SE = 0.03)
#> tau (square root of estimated tau^2 value): 0.13
#> I^2 (total heterogeneity / total variability): 20.15%
#> H^2 (total variability / sampling variability): 1.25
#>
#> Test for Heterogeneity:
#> Q(df = 22) = 27.55, p-val = 0.19
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> 0.56 0.06 8.70 <.01 0.43 0.68 ***
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
### funnel plot
funnel(res, xlab="Standardized Mean Difference", ylim=c(0,0.6))
### rank and regression tests for funnel plot asymmetry
ranktest(res)
#> Warning: Cannot compute exact p-value with ties
#>
#> Rank Correlation Test for Funnel Plot Asymmetry
#>
#> Kendall's tau = 0.4284, p = 0.0049
#>
regtest(res)
#>
#> Regression Test for Funnel Plot Asymmetry
#>
#> Model: mixed-effects meta-regression model
#> Predictor: standard error
#>
#> Test for Funnel Plot Asymmetry: z = 3.1763, p = 0.0015
#> Limit Estimate (as sei -> 0): b = 0.0519 (CI: -0.2615, 0.3653)
#>
### meta-regression analyses examining various potential moderators
rma(smd, sei=se, mods = ~ score, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0211 (SE = 0.0288)
#> tau (square root of estimated tau^2 value): 0.1453
#> I^2 (residual heterogeneity / unaccounted variability): 22.94%
#> H^2 (unaccounted variability / sampling variability): 1.30
#> R^2 (amount of heterogeneity accounted for): 0.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 27.2532, p-val = 0.1626
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 0.3454, p-val = 0.5567
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.6830 0.2183 3.1286 0.0018 0.2551 1.1109 **
#> score -0.0149 0.0253 -0.5877 0.5567 -0.0646 0.0348
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ alloconc, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0227 (SE = 0.0299)
#> tau (square root of estimated tau^2 value): 0.1507
#> I^2 (residual heterogeneity / unaccounted variability): 23.78%
#> H^2 (unaccounted variability / sampling variability): 1.31
#> R^2 (amount of heterogeneity accounted for): 0.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 27.5502, p-val = 0.1534
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 0.0417, p-val = 0.8383
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.5786 0.1041 5.5588 <.0001 0.3746 0.7827 ***
#> alloconc -0.0275 0.1348 -0.2041 0.8383 -0.2917 0.2366
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ blind, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0226 (SE = 0.0298)
#> tau (square root of estimated tau^2 value): 0.1502
#> I^2 (residual heterogeneity / unaccounted variability): 23.65%
#> H^2 (unaccounted variability / sampling variability): 1.31
#> R^2 (amount of heterogeneity accounted for): 0.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 27.5032, p-val = 0.1548
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 0.0695, p-val = 0.7921
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.5809 0.0972 5.9752 <.0001 0.3903 0.7714 ***
#> blind -0.0349 0.1325 -0.2635 0.7921 -0.2946 0.2248
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ itt, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0224 (SE = 0.0298)
#> tau (square root of estimated tau^2 value): 0.1495
#> I^2 (residual heterogeneity / unaccounted variability): 23.49%
#> H^2 (unaccounted variability / sampling variability): 1.31
#> R^2 (amount of heterogeneity accounted for): 0.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 27.4459, p-val = 0.1566
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 0.0360, p-val = 0.8496
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.5496 0.0926 5.9355 <.0001 0.3681 0.7310 ***
#> itt 0.0250 0.1319 0.1897 0.8496 -0.2336 0.2836
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ duration, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0230 (SE = 0.0304)
#> tau (square root of estimated tau^2 value): 0.1516
#> I^2 (residual heterogeneity / unaccounted variability): 23.62%
#> H^2 (unaccounted variability / sampling variability): 1.31
#> R^2 (amount of heterogeneity accounted for): 0.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 27.4927, p-val = 0.1551
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 0.0004, p-val = 0.9849
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.5601 0.1451 3.8605 0.0001 0.2757 0.8444 ***
#> duration 0.0002 0.0088 0.0190 0.9849 -0.0171 0.0174
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ tailor, data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0074 (SE = 0.0252)
#> tau (square root of estimated tau^2 value): 0.0863
#> I^2 (residual heterogeneity / unaccounted variability): 9.14%
#> H^2 (unaccounted variability / sampling variability): 1.10
#> R^2 (amount of heterogeneity accounted for): 58.32%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 23.1124, p-val = 0.3380
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 3.5474, p-val = 0.0596
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.3717 0.1084 3.4281 0.0006 0.1592 0.5843 ***
#> tailor 0.2434 0.1292 1.8835 0.0596 -0.0099 0.4967 .
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ pperf, data=dat, method="DL")
#> Warning: 2 studies with NAs omitted from model fitting.
#>
#> Mixed-Effects Model (k = 21; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0 (SE = 0.0237)
#> tau (square root of estimated tau^2 value): 0
#> I^2 (residual heterogeneity / unaccounted variability): 0.00%
#> H^2 (unaccounted variability / sampling variability): 1.00
#> R^2 (amount of heterogeneity accounted for): 100.00%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 19) = 17.1739, p-val = 0.5781
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 7.3013, p-val = 0.0069
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.7318 0.0997 7.3429 <.0001 0.5365 0.9272 ***
#> pperf -0.0137 0.0051 -2.7021 0.0069 -0.0236 -0.0038 **
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
rma(smd, sei=se, mods = ~ I(meetings * hours), data=dat, method="DL")
#>
#> Mixed-Effects Model (k = 23; tau^2 estimator: DL)
#>
#> tau^2 (estimated amount of residual heterogeneity): 0.0075 (SE = 0.0239)
#> tau (square root of estimated tau^2 value): 0.0867
#> I^2 (residual heterogeneity / unaccounted variability): 9.72%
#> H^2 (unaccounted variability / sampling variability): 1.11
#> R^2 (amount of heterogeneity accounted for): 57.90%
#>
#> Test for Residual Heterogeneity:
#> QE(df = 21) = 23.2607, p-val = 0.3302
#>
#> Test of Moderators (coefficient 2):
#> QM(df = 1) = 3.8574, p-val = 0.0495
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> intrcpt 0.4453 0.0773 5.7644 <.0001 0.2939 0.5968 ***
#> I(meetings * hours) 0.0073 0.0037 1.9640 0.0495 0.0000 0.0146 *
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>