Results from 350,757 coin flips by 48 people to examine the presence of same-side bias.

dat.bartos2023

Format

The data frame contains the following columns:

personcharacterperson identifier
hsamenumericnumber of flips where the coin landed on heads and on the same side as where it started
hdiffnumericnumber of flips where the coin landed on heads and on the different side as where it started
tsamenumericnumber of flips where the coin landed on tails and on the same side as where it started
tdiffnumericnumber of flips where the coin landed on tails and on the different side as where it started
samenumericnumber of flips where the coin landed on the same side as where it started
flipsnumerictotal number of flips

Details

In a landmark study by Bartoš et al. (2023), 48 people flipped a coin (of various currencies and/or denominations) a total of 350,757 times, recording on each flip whether it landed on heads or tails and whether the coin landed on the same side as where it started or on the different side. The goal of this experiment was to examine the model by Diaconis, Holmes, and Montgomery (2007), according to which flipped coins have a slightly higher than 50% chance (of around 51% according to the D-H-M model) of landing on the same side as where they started.

Source

Bartoš, F., Sarafoglou, A., Godmann, H. R., Sahrani, A., Leunk, D. K., Gui, P. Y., Voss, D., Ullah, K., Zoubek, M. J., Nippold, F., Aust, F., Vieira, F. F., Islam, C.-G., Zoubek, A. J., Shabani, S., Petter, J., Roos, I. B., Finnemann, A., Lob, A. B., Hoffstadt, M. F., Nak, J., de Ron, J., Derks, K., Huth, K., Terpstra, S., Bastelica, T., Matetovici, M., Ott, V. L., Zetea, A. S., Karnbach, K., Donzallaz, M. C., John, A., Moore, R. M., Assion, F., van Bork, R., Leidinger, T. E., Zhao, X., Motaghi, A. K., Pan, T., Armstrong, H., Peng, T., Bialas, M., Pang, J. Y.-C., Fu, B., Yang, S., Lin, X., Sleiffer, D., Bognar, M., Aczel, B., & Wagenmakers, E.-J. (2023). Fair coins tend to land on the same side they started: Evidence from 350,757 flips. arXiv, 2310.04153, v2. https://arxiv.org/abs/2310.04153

References

Diaconis, P., Holmes, S., & Montgomery, R. (2007). Dynamical bias in the coin toss. SIAM Review, 49(2), 211–235. https://doi.org/10.1137/s0036144504446436

Concepts

physics, human factors, proportions, multivariate models

Examples

### copy data into 'dat' and examine data
dat <- dat.bartos2023
dat
#>        person hsame hdiff tsame tdiff  same flips
#> 1     XiaoyiL   375   406   405   414   780  1600
#> 2    JoyceYCP   588   586   538   588  1126  2300
#> 3   AndreeaSZ  1129  1134  1075  1139  2204  4477
#> 4     KaleemU  3506  3642  3550  3626  7056 14324
#> 5    FelipeFV  2502  2531  2455  2527  4957 10015
#> 6       ArneJ   995   982   942   981  1937  3900
#> 7       AmirS  3756  3775  3702  3779  7458 15012
#> 8     ChrisGI  2546  2519  2425  2515  4971 10005
#> 9   FrederikA  2564  2638  2655  2643  5219 10500
#> 10 FranziskaN  2634  2718  2734  2671  5368 10757
#> 11   RietvanB   876   899   925   900  1801  3600
#> 12     JasonN  1692  1676  1660  1672  3352  6700
#> 13   PierreYG  3825  3745  3681  3749  7506 15000
#> 14  KarolineH  1370  1369  1391  1370  2761  5500
#> 15    SjoerdT  1291  1247  1219  1243  2510  5000
#> 16      SaraS  2615  2486  2407  2492  5022 10000
#> 17   HenrikRG  4382  4264  4267  4269  8649 17182
#> 18      IrmaT   188   173   165   175   353   701
#> 19 KatharinaK  1136  1088  1084  1092  2220  4400
#> 20      JillR  1619  1601  1642  1601  3261  6463
#> 21 FrantisekB  5097  4979  5051  4973 10148 20100
#> 22 IngeborgBR  2132  2126  2208  2130  4340  8596
#> 23  VincentLO  1143  1215  1332  1210  2475  4900
#> 24     EricJW  1012  1015  1059  1014  2071  4100
#> 25     MalteZ  2831  2715  2728  2726  5559 11000
#> 26  TheresaEL   895   866   874   865  1769  3500
#> 27     DavidV  3552  3933  4034  3480  7586 14999
#> 28    AntonJZ  2587  2463  2482  2472  5069 10004
#> 29     MagdaM  1244  1221  1266  1213  2510  4944
#> 30    ThomasB  1221  1233  1319  1227  2540  5000
#> 31     BohanF   580   544   538   538  1118  2200
#> 32     JonasP  2546  2458  2534  2458  5080  9996
#> 33    HannahA   704   739   821   736  1525  3000
#> 34   AdrianKM   880   828   869   823  1749  3400
#> 35    AaronBL  1937  1787  1878  1798  3815  7400
#> 36      KoenD  1622  1550  1687  1541  3309  6400
#> 37 MichelleCD  1118  1037  1106  1039  2224  4300
#> 38      RoyMM   971   942  1049   938  2020  3900
#> 39      TingP   855   770   803   772  1658  3200
#> 40      MaraB   728   660   698   664  1426  2750
#> 41      AdamF  2175  1996  2159  1998  4334  8328
#> 42 AlexandraS  4556  4180  4524  4174  9080 17434
#> 43   MadlenFH  1769  1699  1936  1694  3705  7098
#> 44    DavidKL  3903  3552  3992  3553  7895 15000
#> 45 XiaochangZ   901   804   968   808  1869  3481
#> 46 FranziskaA   990   876  1065   869  2055  3800
#> 47       JanY   510   368   446   367   956  1691
#> 48    TianqiP   780   557   902   561  1682  2800

### load metafor package
library(metafor)

### compute proportions and the corresponding sampling variances
dat <- escalc(measure="PR", xi=same, ni=flips, data=dat, slab=person)
dat
#> 
#>        person hsame hdiff tsame tdiff  same flips     yi     vi 
#> 1     XiaoyiL   375   406   405   414   780  1600 0.4875 0.0002 
#> 2    JoyceYCP   588   586   538   588  1126  2300 0.4896 0.0001 
#> 3   AndreeaSZ  1129  1134  1075  1139  2204  4477 0.4923 0.0001 
#> 4     KaleemU  3506  3642  3550  3626  7056 14324 0.4926 0.0000 
#> 5    FelipeFV  2502  2531  2455  2527  4957 10015 0.4950 0.0000 
#> 6       ArneJ   995   982   942   981  1937  3900 0.4967 0.0001 
#> 7       AmirS  3756  3775  3702  3779  7458 15012 0.4968 0.0000 
#> 8     ChrisGI  2546  2519  2425  2515  4971 10005 0.4969 0.0000 
#> 9   FrederikA  2564  2638  2655  2643  5219 10500 0.4970 0.0000 
#> 10 FranziskaN  2634  2718  2734  2671  5368 10757 0.4990 0.0000 
#> 11   RietvanB   876   899   925   900  1801  3600 0.5003 0.0001 
#> 12     JasonN  1692  1676  1660  1672  3352  6700 0.5003 0.0000 
#> 13   PierreYG  3825  3745  3681  3749  7506 15000 0.5004 0.0000 
#> 14  KarolineH  1370  1369  1391  1370  2761  5500 0.5020 0.0000 
#> 15    SjoerdT  1291  1247  1219  1243  2510  5000 0.5020 0.0000 
#> 16      SaraS  2615  2486  2407  2492  5022 10000 0.5022 0.0000 
#> 17   HenrikRG  4382  4264  4267  4269  8649 17182 0.5034 0.0000 
#> 18      IrmaT   188   173   165   175   353   701 0.5036 0.0004 
#> 19 KatharinaK  1136  1088  1084  1092  2220  4400 0.5045 0.0001 
#> 20      JillR  1619  1601  1642  1601  3261  6463 0.5046 0.0000 
#> 21 FrantisekB  5097  4979  5051  4973 10148 20100 0.5049 0.0000 
#> 22 IngeborgBR  2132  2126  2208  2130  4340  8596 0.5049 0.0000 
#> 23  VincentLO  1143  1215  1332  1210  2475  4900 0.5051 0.0001 
#> 24     EricJW  1012  1015  1059  1014  2071  4100 0.5051 0.0001 
#> 25     MalteZ  2831  2715  2728  2726  5559 11000 0.5054 0.0000 
#> 26  TheresaEL   895   866   874   865  1769  3500 0.5054 0.0001 
#> 27     DavidV  3552  3933  4034  3480  7586 14999 0.5058 0.0000 
#> 28    AntonJZ  2587  2463  2482  2472  5069 10004 0.5067 0.0000 
#> 29     MagdaM  1244  1221  1266  1213  2510  4944 0.5077 0.0001 
#> 30    ThomasB  1221  1233  1319  1227  2540  5000 0.5080 0.0000 
#> 31     BohanF   580   544   538   538  1118  2200 0.5082 0.0001 
#> 32     JonasP  2546  2458  2534  2458  5080  9996 0.5082 0.0000 
#> 33    HannahA   704   739   821   736  1525  3000 0.5083 0.0001 
#> 34   AdrianKM   880   828   869   823  1749  3400 0.5144 0.0001 
#> 35    AaronBL  1937  1787  1878  1798  3815  7400 0.5155 0.0000 
#> 36      KoenD  1622  1550  1687  1541  3309  6400 0.5170 0.0000 
#> 37 MichelleCD  1118  1037  1106  1039  2224  4300 0.5172 0.0001 
#> 38      RoyMM   971   942  1049   938  2020  3900 0.5179 0.0001 
#> 39      TingP   855   770   803   772  1658  3200 0.5181 0.0001 
#> 40      MaraB   728   660   698   664  1426  2750 0.5185 0.0001 
#> 41      AdamF  2175  1996  2159  1998  4334  8328 0.5204 0.0000 
#> 42 AlexandraS  4556  4180  4524  4174  9080 17434 0.5208 0.0000 
#> 43   MadlenFH  1769  1699  1936  1694  3705  7098 0.5220 0.0000 
#> 44    DavidKL  3903  3552  3992  3553  7895 15000 0.5263 0.0000 
#> 45 XiaochangZ   901   804   968   808  1869  3481 0.5369 0.0001 
#> 46 FranziskaA   990   876  1065   869  2055  3800 0.5408 0.0001 
#> 47       JanY   510   368   446   367   956  1691 0.5653 0.0001 
#> 48    TianqiP   780   557   902   561  1682  2800 0.6007 0.0001 
#> 

### compute confidence intervals for the individual proportions (as in Table 1)
summary(dat, digits=3)[c(1,6:8,13,14)]
#> 
#>        person  same flips    yi ci.lb ci.ub 
#> 1     XiaoyiL   780  1600 0.487 0.463 0.512 
#> 2    JoyceYCP  1126  2300 0.490 0.469 0.510 
#> 3   AndreeaSZ  2204  4477 0.492 0.478 0.507 
#> 4     KaleemU  7056 14324 0.493 0.484 0.501 
#> 5    FelipeFV  4957 10015 0.495 0.485 0.505 
#> 6       ArneJ  1937  3900 0.497 0.481 0.512 
#> 7       AmirS  7458 15012 0.497 0.489 0.505 
#> 8     ChrisGI  4971 10005 0.497 0.487 0.507 
#> 9   FrederikA  5219 10500 0.497 0.487 0.507 
#> 10 FranziskaN  5368 10757 0.499 0.490 0.508 
#> 11   RietvanB  1801  3600 0.500 0.484 0.517 
#> 12     JasonN  3352  6700 0.500 0.488 0.512 
#> 13   PierreYG  7506 15000 0.500 0.492 0.508 
#> 14  KarolineH  2761  5500 0.502 0.489 0.515 
#> 15    SjoerdT  2510  5000 0.502 0.488 0.516 
#> 16      SaraS  5022 10000 0.502 0.492 0.512 
#> 17   HenrikRG  8649 17182 0.503 0.496 0.511 
#> 18      IrmaT   353   701 0.504 0.467 0.541 
#> 19 KatharinaK  2220  4400 0.505 0.490 0.519 
#> 20      JillR  3261  6463 0.505 0.492 0.517 
#> 21 FrantisekB 10148 20100 0.505 0.498 0.512 
#> 22 IngeborgBR  4340  8596 0.505 0.494 0.515 
#> 23  VincentLO  2475  4900 0.505 0.491 0.519 
#> 24     EricJW  2071  4100 0.505 0.490 0.520 
#> 25     MalteZ  5559 11000 0.505 0.496 0.515 
#> 26  TheresaEL  1769  3500 0.505 0.489 0.522 
#> 27     DavidV  7586 14999 0.506 0.498 0.514 
#> 28    AntonJZ  5069 10004 0.507 0.497 0.516 
#> 29     MagdaM  2510  4944 0.508 0.494 0.522 
#> 30    ThomasB  2540  5000 0.508 0.494 0.522 
#> 31     BohanF  1118  2200 0.508 0.487 0.529 
#> 32     JonasP  5080  9996 0.508 0.498 0.518 
#> 33    HannahA  1525  3000 0.508 0.490 0.526 
#> 34   AdrianKM  1749  3400 0.514 0.498 0.531 
#> 35    AaronBL  3815  7400 0.516 0.504 0.527 
#> 36      KoenD  3309  6400 0.517 0.505 0.529 
#> 37 MichelleCD  2224  4300 0.517 0.502 0.532 
#> 38      RoyMM  2020  3900 0.518 0.502 0.534 
#> 39      TingP  1658  3200 0.518 0.501 0.535 
#> 40      MaraB  1426  2750 0.519 0.500 0.537 
#> 41      AdamF  4334  8328 0.520 0.510 0.531 
#> 42 AlexandraS  9080 17434 0.521 0.513 0.528 
#> 43   MadlenFH  3705  7098 0.522 0.510 0.534 
#> 44    DavidKL  7895 15000 0.526 0.518 0.534 
#> 45 XiaochangZ  1869  3481 0.537 0.520 0.553 
#> 46 FranziskaA  2055  3800 0.541 0.525 0.557 
#> 47       JanY   956  1691 0.565 0.542 0.589 
#> 48    TianqiP  1682  2800 0.601 0.583 0.619 
#> 

### compute a confidence interval based on the column totals
summary(escalc(measure="PR", xi=sum(dat$same), ni=sum(dat$flips)), digits=3)
#> 
#>      yi    vi   sei      zi  pval ci.lb ci.ub 
#> 1 0.508 0.000 0.001 601.435 <.001 0.506 0.509 
#> 

### this is the same as meta-analyzing the proportions directly using an equal-effects
### model and also computing the sampling variances under the assumption that the true
### proportions are homogeneous
rma(measure="PR", xi=same, ni=flips, vtype="AV", method="EE", data=dat, digits=3)
#> 
#> Equal-Effects Model (k = 48)
#> 
#> I^2 (total heterogeneity / total variability):   82.28%
#> H^2 (total variability / sampling variability):  5.64
#> 
#> Test for Heterogeneity:
#> Q(df = 47) = 265.264, p-val < .001
#> 
#> Model Results:
#> 
#> estimate     se     zval   pval  ci.lb  ci.ub      
#>    0.508  0.001  601.435  <.001  0.506  0.509  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 

### fit a random-effects model
res <- rma(yi, vi, data=dat)
res
#> 
#> Random-Effects Model (k = 48; tau^2 estimator: REML)
#> 
#> tau^2 (estimated amount of total heterogeneity): 0.0003 (SE = 0.0001)
#> tau (square root of estimated tau^2 value):      0.0160
#> I^2 (total heterogeneity / total variability):   88.10%
#> H^2 (total variability / sampling variability):  8.40
#> 
#> Test for Heterogeneity:
#> Q(df = 47) = 269.9833, p-val < .0001
#> 
#> Model Results:
#> 
#> estimate      se      zval    pval   ci.lb   ci.ub      
#>   0.5100  0.0025  201.9923  <.0001  0.5050  0.5149  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 

### profile likelihood confidence interval for tau^2
confint(res, type="PL")
#> 
#>        estimate   ci.lb   ci.ub 
#> tau^2    0.0003  0.0002  0.0005 
#> tau      0.0160  0.0139  0.0215 
#> I^2(%)  88.0966 84.9208 93.0443 
#> H^2      8.4010  6.6317 14.3766 
#> 

### forest plot
forest(res, header=TRUE, refline=0.5, xlim=c(0.38,0.72), digits=c(3,2))


### funnel plot
funnel(res, xlim=c(0.45,0.6), ylim=c(0,.02))


### fit a random-effects model excluding those with same-side proportions larger than 0.53
res <- rma(yi, vi, data=dat, subset=yi<=0.53)
res
#> 
#> Random-Effects Model (k = 44; tau^2 estimator: REML)
#> 
#> tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0000)
#> tau (square root of estimated tau^2 value):      0.0070
#> I^2 (total heterogeneity / total variability):   60.08%
#> H^2 (total variability / sampling variability):  2.50
#> 
#> Test for Heterogeneity:
#> Q(df = 43) = 113.3824, p-val < .0001
#> 
#> Model Results:
#> 
#> estimate      se      zval    pval   ci.lb   ci.ub      
#>   0.5060  0.0014  353.6383  <.0001  0.5032  0.5088  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
confint(res, type="PL")
#> 
#>        estimate   ci.lb   ci.ub 
#> tau^2    0.0000  0.0000  0.0001 
#> tau      0.0070  0.0070  0.0105 
#> I^2(%)  60.0772 60.0772 77.1134 
#> H^2      2.5048  2.5048  4.3694 
#> 

### fit a binomial-normal model
res <- rma.glmm(measure="PLO", xi=same, ni=flips, data=dat)
res
#> 
#> Random-Effects Model (k = 48; tau^2 estimator: ML)
#> 
#> tau^2 (estimated amount of total heterogeneity): 0.0039
#> tau (square root of estimated tau^2 value):      0.0626
#> I^2 (total heterogeneity / total variability):   87.62%
#> H^2 (total variability / sampling variability):  8.08
#> 
#> Tests for Heterogeneity:
#> Wld(df = 47) = 263.9502, p-val < .0001
#> LRT(df = 47) = 266.1506, p-val < .0001
#> 
#> Model Results:
#> 
#> estimate      se    zval    pval   ci.lb   ci.ub      
#>   0.0399  0.0099  4.0132  <.0001  0.0204  0.0593  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
predict(res, transf=plogis)
#> 
#>    pred  ci.lb  ci.ub  pi.lb  pi.ub 
#>  0.5100 0.5051 0.5148 0.4789 0.5409 
#> 

### conduct a meta-analysis for the proportions of heads (to examine heads-tails bias)
dat <- escalc(measure="PR", xi=hdiff+hsame, ni=flips, data=dat)
res <- rma(yi, vi, data=dat)
res
#> 
#> Random-Effects Model (k = 48; tau^2 estimator: REML)
#> 
#> tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0000)
#> tau (square root of estimated tau^2 value):      0.0002
#> I^2 (total heterogeneity / total variability):   0.12%
#> H^2 (total variability / sampling variability):  1.00
#> 
#> Test for Heterogeneity:
#> Q(df = 47) = 51.6720, p-val = 0.2963
#> 
#> Model Results:
#> 
#> estimate      se      zval    pval   ci.lb   ci.ub      
#>   0.5001  0.0008  591.9090  <.0001  0.4985  0.5018  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
confint(res, type="PL")
#> 
#>        estimate  ci.lb  ci.ub 
#> tau^2    0.0000 0.0000 0.0000 
#> tau      0.0002 0.0000 0.0002 
#> I^2(%)   0.1212 0.0000 0.1212 
#> H^2      1.0012 1.0000 1.0012 
#> 

### restructure the dataset for a bivariate meta-analysis of same-side and heads proportions
dat <- dat.bartos2023
dat <- dat[rep(1:nrow(dat), each=2),]
rownames(dat) <- NULL
dat$outcome <- c("heads", "same")
dat <- escalc(measure="PR", xi=hsame+hdiff, ni=flips, data=dat, include=outcome=="heads")
dat <- escalc(measure="PR", xi=hsame+tsame, ni=flips, data=dat, include=outcome=="same")
dat
#> 
#>        person hsame hdiff tsame tdiff  same flips outcome     yi     vi 
#> 1     XiaoyiL   375   406   405   414   780  1600   heads 0.4881 0.0002 
#> 2     XiaoyiL   375   406   405   414   780  1600    same 0.4875 0.0002 
#> 3    JoyceYCP   588   586   538   588  1126  2300   heads 0.5104 0.0001 
#> 4    JoyceYCP   588   586   538   588  1126  2300    same 0.4896 0.0001 
#> 5   AndreeaSZ  1129  1134  1075  1139  2204  4477   heads 0.5055 0.0001 
#> 6   AndreeaSZ  1129  1134  1075  1139  2204  4477    same 0.4923 0.0001 
#> 7     KaleemU  3506  3642  3550  3626  7056 14324   heads 0.4990 0.0000 
#> 8     KaleemU  3506  3642  3550  3626  7056 14324    same 0.4926 0.0000 
#> 9    FelipeFV  2502  2531  2455  2527  4957 10015   heads 0.5025 0.0000 
#> 10   FelipeFV  2502  2531  2455  2527  4957 10015    same 0.4950 0.0000 
#> 11      ArneJ   995   982   942   981  1937  3900   heads 0.5069 0.0001 
#> 12      ArneJ   995   982   942   981  1937  3900    same 0.4967 0.0001 
#> 13      AmirS  3756  3775  3702  3779  7458 15012   heads 0.5017 0.0000 
#> 14      AmirS  3756  3775  3702  3779  7458 15012    same 0.4968 0.0000 
#> 15    ChrisGI  2546  2519  2425  2515  4971 10005   heads 0.5062 0.0000 
#> 16    ChrisGI  2546  2519  2425  2515  4971 10005    same 0.4969 0.0000 
#> 17  FrederikA  2564  2638  2655  2643  5219 10500   heads 0.4954 0.0000 
#> 18  FrederikA  2564  2638  2655  2643  5219 10500    same 0.4970 0.0000 
#> 19 FranziskaN  2634  2718  2734  2671  5368 10757   heads 0.4975 0.0000 
#> 20 FranziskaN  2634  2718  2734  2671  5368 10757    same 0.4990 0.0000 
#> 21   RietvanB   876   899   925   900  1801  3600   heads 0.4931 0.0001 
#> 22   RietvanB   876   899   925   900  1801  3600    same 0.5003 0.0001 
#> 23     JasonN  1692  1676  1660  1672  3352  6700   heads 0.5027 0.0000 
#> 24     JasonN  1692  1676  1660  1672  3352  6700    same 0.5003 0.0000 
#> 25   PierreYG  3825  3745  3681  3749  7506 15000   heads 0.5047 0.0000 
#> 26   PierreYG  3825  3745  3681  3749  7506 15000    same 0.5004 0.0000 
#> 27  KarolineH  1370  1369  1391  1370  2761  5500   heads 0.4980 0.0000 
#> 28  KarolineH  1370  1369  1391  1370  2761  5500    same 0.5020 0.0000 
#> 29    SjoerdT  1291  1247  1219  1243  2510  5000   heads 0.5076 0.0000 
#> 30    SjoerdT  1291  1247  1219  1243  2510  5000    same 0.5020 0.0000 
#> 31      SaraS  2615  2486  2407  2492  5022 10000   heads 0.5101 0.0000 
#> 32      SaraS  2615  2486  2407  2492  5022 10000    same 0.5022 0.0000 
#> 33   HenrikRG  4382  4264  4267  4269  8649 17182   heads 0.5032 0.0000 
#> 34   HenrikRG  4382  4264  4267  4269  8649 17182    same 0.5034 0.0000 
#> 35      IrmaT   188   173   165   175   353   701   heads 0.5150 0.0004 
#> 36      IrmaT   188   173   165   175   353   701    same 0.5036 0.0004 
#> 37 KatharinaK  1136  1088  1084  1092  2220  4400   heads 0.5055 0.0001 
#> 38 KatharinaK  1136  1088  1084  1092  2220  4400    same 0.5045 0.0001 
#> 39      JillR  1619  1601  1642  1601  3261  6463   heads 0.4982 0.0000 
#> 40      JillR  1619  1601  1642  1601  3261  6463    same 0.5046 0.0000 
#> 41 FrantisekB  5097  4979  5051  4973 10148 20100   heads 0.5013 0.0000 
#> 42 FrantisekB  5097  4979  5051  4973 10148 20100    same 0.5049 0.0000 
#> 43 IngeborgBR  2132  2126  2208  2130  4340  8596   heads 0.4953 0.0000 
#> 44 IngeborgBR  2132  2126  2208  2130  4340  8596    same 0.5049 0.0000 
#> 45  VincentLO  1143  1215  1332  1210  2475  4900   heads 0.4812 0.0001 
#> 46  VincentLO  1143  1215  1332  1210  2475  4900    same 0.5051 0.0001 
#> 47     EricJW  1012  1015  1059  1014  2071  4100   heads 0.4944 0.0001 
#> 48     EricJW  1012  1015  1059  1014  2071  4100    same 0.5051 0.0001 
#> 49     MalteZ  2831  2715  2728  2726  5559 11000   heads 0.5042 0.0000 
#> 50     MalteZ  2831  2715  2728  2726  5559 11000    same 0.5054 0.0000 
#> 51  TheresaEL   895   866   874   865  1769  3500   heads 0.5031 0.0001 
#> 52  TheresaEL   895   866   874   865  1769  3500    same 0.5054 0.0001 
#> 53     DavidV  3552  3933  4034  3480  7586 14999   heads 0.4990 0.0000 
#> 54     DavidV  3552  3933  4034  3480  7586 14999    same 0.5058 0.0000 
#> 55    AntonJZ  2587  2463  2482  2472  5069 10004   heads 0.5048 0.0000 
#> 56    AntonJZ  2587  2463  2482  2472  5069 10004    same 0.5067 0.0000 
#> 57     MagdaM  1244  1221  1266  1213  2510  4944   heads 0.4986 0.0001 
#> 58     MagdaM  1244  1221  1266  1213  2510  4944    same 0.5077 0.0001 
#> 59    ThomasB  1221  1233  1319  1227  2540  5000   heads 0.4908 0.0000 
#> 60    ThomasB  1221  1233  1319  1227  2540  5000    same 0.5080 0.0000 
#> 61     BohanF   580   544   538   538  1118  2200   heads 0.5109 0.0001 
#> 62     BohanF   580   544   538   538  1118  2200    same 0.5082 0.0001 
#> 63     JonasP  2546  2458  2534  2458  5080  9996   heads 0.5006 0.0000 
#> 64     JonasP  2546  2458  2534  2458  5080  9996    same 0.5082 0.0000 
#> 65    HannahA   704   739   821   736  1525  3000   heads 0.4810 0.0001 
#> 66    HannahA   704   739   821   736  1525  3000    same 0.5083 0.0001 
#> 67   AdrianKM   880   828   869   823  1749  3400   heads 0.5024 0.0001 
#> 68   AdrianKM   880   828   869   823  1749  3400    same 0.5144 0.0001 
#> 69    AaronBL  1937  1787  1878  1798  3815  7400   heads 0.5032 0.0000 
#> 70    AaronBL  1937  1787  1878  1798  3815  7400    same 0.5155 0.0000 
#> 71      KoenD  1622  1550  1687  1541  3309  6400   heads 0.4956 0.0000 
#> 72      KoenD  1622  1550  1687  1541  3309  6400    same 0.5170 0.0000 
#> 73 MichelleCD  1118  1037  1106  1039  2224  4300   heads 0.5012 0.0001 
#> 74 MichelleCD  1118  1037  1106  1039  2224  4300    same 0.5172 0.0001 
#> 75      RoyMM   971   942  1049   938  2020  3900   heads 0.4905 0.0001 
#> 76      RoyMM   971   942  1049   938  2020  3900    same 0.5179 0.0001 
#> 77      TingP   855   770   803   772  1658  3200   heads 0.5078 0.0001 
#> 78      TingP   855   770   803   772  1658  3200    same 0.5181 0.0001 
#> 79      MaraB   728   660   698   664  1426  2750   heads 0.5047 0.0001 
#> 80      MaraB   728   660   698   664  1426  2750    same 0.5185 0.0001 
#> 81      AdamF  2175  1996  2159  1998  4334  8328   heads 0.5008 0.0000 
#> 82      AdamF  2175  1996  2159  1998  4334  8328    same 0.5204 0.0000 
#> 83 AlexandraS  4556  4180  4524  4174  9080 17434   heads 0.5011 0.0000 
#> 84 AlexandraS  4556  4180  4524  4174  9080 17434    same 0.5208 0.0000 
#> 85   MadlenFH  1769  1699  1936  1694  3705  7098   heads 0.4886 0.0000 
#> 86   MadlenFH  1769  1699  1936  1694  3705  7098    same 0.5220 0.0000 
#> 87    DavidKL  3903  3552  3992  3553  7895 15000   heads 0.4970 0.0000 
#> 88    DavidKL  3903  3552  3992  3553  7895 15000    same 0.5263 0.0000 
#> 89 XiaochangZ   901   804   968   808  1869  3481   heads 0.4898 0.0001 
#> 90 XiaochangZ   901   804   968   808  1869  3481    same 0.5369 0.0001 
#> 91 FranziskaA   990   876  1065   869  2055  3800   heads 0.4911 0.0001 
#> 92 FranziskaA   990   876  1065   869  2055  3800    same 0.5408 0.0001 
#> 93       JanY   510   368   446   367   956  1691   heads 0.5192 0.0001 
#> 94       JanY   510   368   446   367   956  1691    same 0.5653 0.0001 
#> 95    TianqiP   780   557   902   561  1682  2800   heads 0.4775 0.0001 
#> 96    TianqiP   780   557   902   561  1682  2800    same 0.6007 0.0001 
#> 

### construct the 2x2 variance-covariance matrix of the proportions within persons
dat$cov <- with(dat, (hsame/flips * (1-hsame/flips) - hsame/flips * tsame/flips -
                      hsame/flips * hdiff/flips - hdiff/flips * tsame/flips) / flips)
V <- lapply(split(dat, dat$person), \(x) matrix(c(x$vi[1], x$cov, x$vi[2]), nrow=2))

### fit bivariate meta-analysis model
res <- rma.mv(yi, V, mods = ~ 0 + outcome, random = ~ outcome | person, struct="UN", data=dat)
res
#> 
#> Multivariate Meta-Analysis Model (k = 96; method: REML)
#> 
#> Variance Components:
#> 
#> outer factor: person  (nlvls = 48)
#> inner factor: outcome (nlvls = 2)
#> 
#>             estim    sqrt  k.lvl  fixed  level 
#> tau^2.1    0.0000  0.0036     48     no  heads 
#> tau^2.2    0.0002  0.0151     48     no   same 
#> 
#>        rho.heds  rho.same    heds  same 
#> heads         1                 -    48 
#> same    -0.3182         1      no     - 
#> 
#> Test for Residual Heterogeneity:
#> QE(df = 94) = 306.8462, p-val < .0001
#> 
#> Test of Moderators (coefficients 1:2):
#> QM(df = 2) = 320714.6985, p-val < .0001
#> 
#> Model Results:
#> 
#>               estimate      se      zval    pval   ci.lb   ci.ub      
#> outcomeheads    0.5006  0.0010  486.8453  <.0001  0.4986  0.5026  *** 
#> outcomesame     0.5097  0.0024  211.1394  <.0001  0.5049  0.5144  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 

### create plot with confidence ellipses ('ellipse' package must be installed)
library(ellipse)
#> 
#> Attaching package: ‘ellipse’
#> The following object is masked from ‘package:graphics’:
#> 
#>     pairs
plot(NA, xlim=c(0.45,0.62), ylim=c(0.45,0.62), bty="l", xlab="Pr(heads)", ylab="Pr(same)")
abline(h=0.5, lty="dotted")
abline(v=0.5, lty="dotted")
# add confidence ellipses for persons
invisible(tapply(dat, dat$person, \(x) {
   xy <- ellipse(matrix(c(x$vi[1],x$cov,x$vi[2]), nrow=2), centre=x$yi, level=0.95)
   lines(xy[,1],xy[,2], col="gray80")
}))
# add the points
invisible(tapply(dat, dat$person, \(x) points(x$yi[1], x$yi[2], pch=21, bg="gray80", cex=1.5)))
# add the 95% PI ellipsis based on the model
xy <- ellipse(res$G, centre=coef(res), level=0.95)
lines(xy[,1],xy[,2], col="gray30", lwd=3, lty="dotted")
# add the 95% CI ellipsis based on the model
xy <- ellipse(vcov(res), centre=coef(res), level=0.95)
lines(xy[,1],xy[,2], col="gray30", lwd=3)
# add the point for the pooled effects
points(coef(res)[1], coef(res)[2], pch=21, bg="gray40", cex=2)