methods.anova.rma.Rd
Methods for objects of class "anova.rma"
and "list.anova.rma"
.
# S3 method for class 'anova.rma'
as.data.frame(x, ...)
# S3 method for class 'list.anova.rma'
as.data.frame(x, ...)
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
### copy data into 'dat'
dat <- dat.bcg
### calculate log risk ratios and corresponding sampling variances
dat <- escalc(measure="RR", ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat)
### fit mixed-effects meta-regression model
res <- rma(yi, vi, mods = ~ alloc + ablat, data=dat)
### test the allocation factor
sav <- anova(res, btt="alloc")
sav
#>
#> Test of Moderators (coefficients 2:3):
#> QM(df = 2) = 1.2850, p-val = 0.5260
#>
### turn object into a regular data frame
as.data.frame(sav)
#> coefs QM df pval
#> 1 2:3 1.285017 2 0.5259714
### test the contrast between levels random and systematic
sav <- anova(res, X=c(0,1,-1,0))
sav
#>
#> Hypothesis:
#> 1: allocrandom - allocsystematic = 0
#>
#> Results:
#> estimate se zval pval
#> 1: -0.3260 0.3104 -1.0501 0.2937
#>
#> Test of Hypothesis:
#> QM(df = 1) = 1.1027, p-val = 0.2937
#>
### turn object into a regular data frame
as.data.frame(sav)
#> hyp estimate se zval pval
#> 1: allocrandom - allocsystematic = 0 -0.3259536 0.3104031 -1.050098 0.2936731
### fit random-effects model
res0 <- rma(yi, vi, data=dat)
### LRT comparing the two models
sav <- anova(res, res0, refit=TRUE)
sav
#>
#> df AIC BIC AICc logLik LRT pval QE tau^2 R^2
#> Full 5 24.0269 26.8517 32.5984 -7.0135 26.2034 0.0294
#> Reduced 2 29.3302 30.4601 30.5302 -12.6651 11.3032 0.0102 152.2330 0.2800 89.4967%
#>
### turn object into a regular data frame
as.data.frame(sav)
#> df AIC BIC AICc logLik LRT pval QE tau^2 R^2
#> Full 5 24.02692 26.85167 32.59835 -7.013462 NA NA 26.20344 0.02941209 NA
#> Reduced 2 29.33015 30.46005 30.53015 -12.665076 11.30323 0.01019428 152.23301 0.28002817 89.49674