dat.frank2008.Rd
Results from 4 case-control studies examining the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk.
dat.frank2008
The data frame contains the following columns:
study | character | study identifier |
bc.ins.ins | numeric | number of cases who have a homozygous insertion polymorphism |
bc.ins.del | numeric | number of cases who have a heterozygous insertion/deletion polymorphism |
bc.del.del | numeric | number of cases who have a homozygous deletion polymorphism |
ct.ins.ins | numeric | number of controls who have a homozygous insertion polymorphism |
ct.ins.del | numeric | number of controls who are heterozygous insertion/deletion polymorphism |
ct.del.del | numeric | number of controls who have a homozygous deletion polymorphism |
The 4 studies included in this dataset are case-control studies that have examined the association between the CASP8 -652 6N del promoter polymorphism and breast cancer risk. Breast cancer cases and controls were genotyped and either had a homozygous insertion, a heterozygous insertion/deletion, or a homozygous deletion polymorphism.
Ziegler et al. (2011) used the same dataset to illustrate the use of meta-analytic methods to examine deviations from Hardy-Weinberg equilibrium across multiple studies. The relative excess heterozygosity (REH) is the proposed measure for such a meta-analysis, which can be computed by setting measure="REH"
.
Frank, B., Rigas, S. H., Bermejo, J. L., Wiestler, M., Wagner, K., Hemminki, K., Reed, M. W., Sutter, C., Wappenschmidt, B., Balasubramanian, S. P., Meindl, A., Kiechle, M., Bugert, P., Schmutzler, R. K., Bartram, C. R., Justenhoven, C., Ko, Y.-D., Brüning, T., Brauch, H., Hamann, U., Pharoah, P. P. D., Dunning, A. M., Pooley, K. A., Easton, D. F., Cox, A. & Burwinkel, B. (2008). The CASP8 -652 6N del promoter polymorphism and breast cancer risk: A multicenter study. Breast Cancer Research and Treatment, 111(1), 139–144. https://doi.org/10.1007/s10549-007-9752-z
Ziegler, A., Steen, K. V. & Wellek, S. (2011). Investigating Hardy-Weinberg equilibrium in case-control or cohort studies or meta-analysis. Breast Cancer Research and Treatment, 128(1), 197–201. https://doi.org/10.1007/s10549-010-1295-z
medicine, oncology, genetics, odds ratios
### copy data into 'dat' and examine data
dat <- dat.frank2008
dat
#> study bc.ins.ins bc.ins.del bc.del.del ct.ins.ins ct.ins.del ct.del.del
#> 1 GFBCS 298 535 221 270 506 263
#> 2 SBCS 235 541 251 245 608 321
#> 3 GENICA 280 509 222 285 492 229
#> 4 SEARCH 1133 2115 1050 1149 2263 1062
### load metafor package
library(metafor)
### calculate log odds ratios comparing ins/del versus ins/ins
dat <- escalc(measure="OR", ai=bc.ins.del, bi=bc.ins.ins,
ci=ct.ins.del, di=ct.ins.ins, data=dat)
### fit random-effects model and get the pooled odds ratio (with 95% CI)
res <- rma(yi, vi, data=dat)
res
#>
#> Random-Effects Model (k = 4; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0058)
#> tau (square root of estimated tau^2 value): 0
#> I^2 (total heterogeneity / total variability): 0.00%
#> H^2 (total variability / sampling variability): 1.00
#>
#> Test for Heterogeneity:
#> Q(df = 3) = 0.9329, p-val = 0.8175
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.0401 0.0395 -1.0155 0.3099 -0.1175 0.0373
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub pi.lb pi.ub
#> 0.96 0.89 1.04 0.89 1.04
#>
### calculate log odds ratios comparing del/del versus ins/ins
dat <- escalc(measure="OR", ai=bc.del.del, bi=bc.ins.ins,
ci=ct.del.del, di=ct.ins.ins, data=dat)
### fit random-effects model and get the pooled odds ratio (with 95% CI)
res <- rma(yi, vi, data=dat)
res
#>
#> Random-Effects Model (k = 4; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0.0090 (SE = 0.0165)
#> tau (square root of estimated tau^2 value): 0.0950
#> I^2 (total heterogeneity / total variability): 45.66%
#> H^2 (total variability / sampling variability): 1.84
#>
#> Test for Heterogeneity:
#> Q(df = 3) = 5.4814, p-val = 0.1398
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.0988 0.0706 -1.4005 0.1614 -0.2372 0.0395
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub pi.lb pi.ub
#> 0.91 0.79 1.04 0.72 1.14
#>
### calculate log odds ratios comparing ins/del+del/del versus ins/ins
dat <- escalc(measure="OR", ai=bc.ins.del+bc.del.del, bi=bc.ins.ins,
ci=ct.ins.del+ct.del.del, di=ct.ins.ins, data=dat)
### fit random-effects model and get the pooled odds ratio (with 95% CI)
res <- rma(yi, vi, data=dat)
res
#>
#> Random-Effects Model (k = 4; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0 (SE = 0.0052)
#> tau (square root of estimated tau^2 value): 0
#> I^2 (total heterogeneity / total variability): 0.00%
#> H^2 (total variability / sampling variability): 1.00
#>
#> Test for Heterogeneity:
#> Q(df = 3) = 1.6413, p-val = 0.6501
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.0481 0.0373 -1.2921 0.1963 -0.1211 0.0249
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub pi.lb pi.ub
#> 0.95 0.89 1.03 0.89 1.03
#>
############################################################################
### compute the relative excess heterozygosity in the controls
dat <- escalc(measure="REH", ai=ct.ins.ins, bi=ct.ins.del, ci=ct.del.del,
slab=study, data=dat)
### fit random-effects model and get the pooled REH value (with 90% CI)
res <- rma(yi, vi, data=dat, level=90)
res
#>
#> Random-Effects Model (k = 4; tau^2 estimator: REML)
#>
#> tau^2 (estimated amount of total heterogeneity): 0.0000 (SE = 0.0019)
#> tau (square root of estimated tau^2 value): 0.0011
#> I^2 (total heterogeneity / total variability): 0.05%
#> H^2 (total variability / sampling variability): 1.00
#>
#> Test for Heterogeneity:
#> Q(df = 3) = 3.2001, p-val = 0.3618
#>
#> Model Results:
#>
#> estimate se zval pval ci.lb ci.ub
#> 0.0143 0.0228 0.6242 0.5325 -0.0233 0.0518
#>
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub pi.lb pi.ub
#> 1.01 0.98 1.05 0.98 1.05
#>
### draw forest plot
forest(res, atransf=exp, header=TRUE, top=2, xlim=c(-1.4,1.4), at=log(c(0.5,5/7,1,7/5,2)))
segments(log(5/7), -2, log(5/7), res$k+1, lty="dotted")
segments(log(7/5), -2, log(7/5), res$k+1, lty="dotted")