dat.egger2001.Rd
Results from 16 trials examining the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction.
dat.egger2001
The data frame contains the following columns:
id | numeric | trial id number |
study | character | first author or trial name |
year | numeric | publication year |
ai | numeric | number of deaths in the magnesium group |
n1i | numeric | number of patients in the magnesium group |
ci | numeric | number of deaths in the control group |
n2i | numeric | number of patients in the control group |
The dataset includes the results from 16 randomized clinical trials that examined the effectiveness of intravenous magnesium in the prevention of death following acute myocardial infarction. Studies 1-7 were included in the meta-analyses by Teo et al. (1991) and Horner (1992) and were combined with the results from the LIMIT-2 trial (Woods et al., 1992) in Yusuf et al. (1993), suggesting that magnesium is an effective treatment for reducing mortality. However, the results from the ISIS-4 mega trial (ISIS-4 Collaborative Group, 1995) indicated no reduction in mortality with magnesium treatment. Publication bias has been suggested as one possible explanation for the conflicting findings (Egger & Davey Smith, 1995).
The present dataset includes some additional trials and are based on Table 18.2 from Egger, Davey Smith, and Altman (2001).
Egger, M., Davey Smith, G., & Altman, D. G. (Eds.) (2001). Systematic reviews in health care: Meta-analysis in context (2nd ed.). London: BMJ Books.
Egger, M., & Davey Smith, G. (1995). Misleading meta-analysis: Lessons from “an effective, safe, simple” intervention that wasn't. British Medical Journal, 310(6982), 752–754. https://doi.org/10.1136/bmj.310.6982.752
Horner, S. M. (1992). Efficacy of intravenous magnesium in acute myocardial infarction in reducing arrhythmias and mortality: Meta-analysis of magnesium in acute myocardial infarction. Circulation, 86(3), 774–779. https://doi.org/10.1161/01.cir.86.3.774
ISIS-4 Collaborative Group (1995). ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet, 345(8951), 669–685. https://doi.org/10.1016/S0140-6736(95)90865-X
Teo, K. K., Yusuf, S., Collins, R., Held, P. H., & Peto, R. (1991). Effects of intravenous magnesium in suspected acute myocardial infarction: Overview of randomised trials. British Medical Journal, 303(6816), 1499–1503. https://doi.org/10.1136/bmj.303.6816.1499
Woods, K. L., Fletcher, S., Roffe, C., & Haider, Y. (1992). Intravenous magnesium sulphate in suspected acute myocardial infarction: Results of the second Leicester Intravenous Magnesium Intervention Trial (LIMIT-2). Lancet, 339(8809), 1553–1558. https://doi.org/10.1016/0140-6736(92)91828-v
Yusuf, S., Teo, K., & Woods, K. (1993). Intravenous magnesium in acute myocardial infarction: An effective, safe, simple, and inexpensive treatment. Circulation, 87(6), 2043–2046. https://doi.org/10.1161/01.cir.87.6.2043
medicine, cardiology, Peto's method, publication bias
### copy data into 'dat' and examine data
dat <- dat.egger2001
dat
#> id study year ai n1i ci n2i
#> 1 1 Morton 1984 1 40 2 36
#> 2 2 Rasmussen 1986 9 135 23 135
#> 3 3 Smith 1986 2 200 7 200
#> 4 4 Abraham 1987 1 48 1 46
#> 5 5 Feldstedt 1988 10 150 8 148
#> 6 6 Shechter 1989 1 59 9 56
#> 7 7 Ceremuzynski 1989 1 25 3 23
#> 8 8 Bertschat 1989 0 22 1 21
#> 9 9 Singh 1990 6 76 11 75
#> 10 10 Pereira 1990 1 27 7 27
#> 11 11 Shechter 1991 2 89 12 80
#> 12 12 Golf 1991 5 23 13 33
#> 13 13 Thogersen 1991 4 130 8 122
#> 14 14 LIMIT-2 1992 90 1159 118 1157
#> 15 15 Shechter 1995 4 107 17 108
#> 16 16 ISIS-4 1995 2216 29011 2103 29039
### load metafor package
library(metafor)
### meta-analysis of trials 1-7 using Peto's method (as in Teo et al., 1991)
res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=1:7)
print(res, digits=2)
#>
#> Equal-Effects Model (k = 7)
#>
#> I^2 (total heterogeneity / total variability): 21.13%
#> H^2 (total variability / sampling variability): 1.27
#>
#> Test for Heterogeneity:
#> Q(df = 6) = 7.61, p-val = 0.27
#>
#> Model Results (log scale):
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.80 0.24 -3.39 <.01 -1.26 -0.34
#>
#> Model Results (OR scale):
#>
#> estimate ci.lb ci.ub
#> 0.45 0.28 0.71
#>
### meta-analysis of trials 1-7 and LIMIT-2 (as in Yusuf et al., 1993)
res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=c(1:7,14))
print(res, digits=2)
#>
#> Equal-Effects Model (k = 8)
#>
#> I^2 (total heterogeneity / total variability): 35.71%
#> H^2 (total variability / sampling variability): 1.56
#>
#> Test for Heterogeneity:
#> Q(df = 7) = 10.89, p-val = 0.14
#>
#> Model Results (log scale):
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.44 0.12 -3.52 <.01 -0.68 -0.19
#>
#> Model Results (OR scale):
#>
#> estimate ci.lb ci.ub
#> 0.65 0.51 0.82
#>
### meta-analysis of all trials except ISIS-4
res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat, subset=-16)
print(res, digits=2)
#>
#> Equal-Effects Model (k = 15)
#>
#> I^2 (total heterogeneity / total variability): 36.34%
#> H^2 (total variability / sampling variability): 1.57
#>
#> Test for Heterogeneity:
#> Q(df = 14) = 21.99, p-val = 0.08
#>
#> Model Results (log scale):
#>
#> estimate se zval pval ci.lb ci.ub
#> -0.60 0.11 -5.53 <.01 -0.81 -0.39
#>
#> Model Results (OR scale):
#>
#> estimate ci.lb ci.ub
#> 0.55 0.44 0.68
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub
#> 0.55 0.44 0.68
#>
### meta-analysis of all trials including ISIS-4
res <- rma.peto(ai=ai, n1i=n1i, ci=ci, n2i=n2i, data=dat)
print(res, digits=2)
#>
#> Equal-Effects Model (k = 16)
#>
#> I^2 (total heterogeneity / total variability): 73.12%
#> H^2 (total variability / sampling variability): 3.72
#>
#> Test for Heterogeneity:
#> Q(df = 15) = 55.80, p-val < .01
#>
#> Model Results (log scale):
#>
#> estimate se zval pval ci.lb ci.ub
#> 0.01 0.03 0.20 0.84 -0.05 0.07
#>
#> Model Results (OR scale):
#>
#> estimate ci.lb ci.ub
#> 1.01 0.95 1.07
#>
predict(res, transf=exp, digits=2)
#>
#> pred ci.lb ci.ub
#> 1.01 0.95 1.07
#>
### contour-enhanced funnel plot centered at 0
funnel(res, refline=0, level=c(90, 95, 99), shade=c("white", "gray", "darkgray"))