dat.woods2010.RdResults from 3 trials examining the mortality risk of three treatments and placebo in patients with chronic obstructive pulmonary disease.
dat.woods2010The data frame contains the following columns:
| author | character | first author / study name | 
| treatment | character | treatment | 
| r | integer | number of deaths | 
| N | integer | number of patients | 
Count mortality statistics in randomised controlled trials of treatments for chronic obstructive pulmonary disease (Woods et al., 2010, Table 1).
Woods, B. S., Hawkins, N., & Scott, D. A. (2010). Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. BMC Medical Research Methodology, 10, 54. https://doi.org/10.1186/1471-2288-10-54
medicine, odds ratios, network meta-analysis
### Show full dataset
dat.woods2010
#>          author   treatment r   N
#> 1     Boyd 1997  Salmeterol 1 229
#> 2     Boyd 1997     Placebo 1 227
#> 3 Calverly 2003 Fluticasone 4 374
#> 4 Calverly 2003  Salmeterol 3 372
#> 5 Calverly 2003         SFC 2 358
#> 6 Calverly 2003     Placebo 7 361
#> 7    Celli 2003  Salmeterol 1 554
#> 8    Celli 2003     Placebo 2 270
### Load netmeta package
suppressPackageStartupMessages(library("netmeta"))
### Print odds ratios and confidence limits with two digits
oldset <- settings.meta(digits = 2)
### Change appearance of confidence intervals
cilayout("(", "-")
### Transform data from long arm-based format to contrast-based
### format. Argument 'sm' has to be used for odds ratio as summary
### measure; by default the risk ratio is used in the metabin function
### called internally.
pw <- pairwise(treatment, event = r, n = N,
  studlab = author, data = dat.woods2010, sm = "OR")
pw
#>         studlab      treat1     treat2          TE      seTE event1  n1 event2  n2 incr1 incr2
#> 1     Boyd 1997  Salmeterol    Placebo -0.00881063 1.4173252      1 229      1 227     0     0
#> 2 Calverly 2003 Fluticasone    Placebo -0.60382188 0.6311772      4 374      7 361     0     0
#> 3 Calverly 2003 Fluticasone        SFC  0.65457491 0.8692018      4 374      2 358     0     0
#> 4 Calverly 2003 Fluticasone Salmeterol  0.28497571 0.7672979      4 374      3 372     0     0
#> 5 Calverly 2003  Salmeterol    Placebo -0.88879759 0.6940644      3 372      7 361     0     0
#> 6 Calverly 2003  Salmeterol        SFC  0.36959919 0.9158888      3 372      2 358     0     0
#> 7 Calverly 2003         SFC    Placebo -1.25839679 0.8052894      2 358      7 361     0     0
#> 8    Celli 2003  Salmeterol    Placebo -1.41751820 1.2270043      1 554      2 270     0     0
#>          author  treatment1 treatment2 r1 r2  N1  N2
#> 1     Boyd 1997  Salmeterol    Placebo  1  1 229 227
#> 2 Calverly 2003 Fluticasone    Placebo  4  7 374 361
#> 3 Calverly 2003 Fluticasone        SFC  4  2 374 358
#> 4 Calverly 2003 Fluticasone Salmeterol  4  3 374 372
#> 5 Calverly 2003  Salmeterol    Placebo  3  7 372 361
#> 6 Calverly 2003  Salmeterol        SFC  3  2 372 358
#> 7 Calverly 2003         SFC    Placebo  2  7 358 361
#> 8    Celli 2003  Salmeterol    Placebo  1  2 554 270
### Conduct network meta-analysis
net <- netmeta(pw)
net
#> Number of studies: k = 3
#> Number of pairwise comparisons: m = 8
#> Number of observations: o = 2745
#> Number of treatments: n = 4
#> Number of designs: d = 2
#> 
#> Common effects model
#> 
#> Treatment estimate (sm = 'OR', comparison: other treatments vs 'Fluticasone'):
#>               OR      95%-CI     z p-value
#> Fluticasone    .           .     .       .
#> Placebo     1.81 (0.54-6.10)  0.96  0.3355
#> SFC         0.52 (0.09-2.85) -0.75  0.4514
#> Salmeterol  0.77 (0.19-3.08) -0.37  0.7078
#> 
#> Random effects model
#> 
#> Treatment estimate (sm = 'OR', comparison: other treatments vs 'Fluticasone'):
#>               OR      95%-CI     z p-value
#> Fluticasone    .           .     .       .
#> Placebo     1.81 (0.54-6.10)  0.96  0.3355
#> SFC         0.52 (0.09-2.85) -0.75  0.4514
#> Salmeterol  0.77 (0.19-3.08) -0.37  0.7078
#> 
#> Quantifying heterogeneity / inconsistency:
#> tau^2 = 0; tau = 0; I^2 = 0% (0.0%-89.6%)
#> 
#> Tests of heterogeneity (within designs) and inconsistency (between designs):
#>                    Q d.f. p-value
#> Total           0.57    2  0.7525
#> Within designs  0.56    1  0.4524
#> Between designs 0.00    1  0.9485
#> 
#> Details of network meta-analysis methods:
#> - Frequentist graph-theoretical approach
#> - DerSimonian-Laird estimator for tau^2
#> - Calculation of I^2 based on Q
### Show forest plot
forest(net, ref = "Placebo", drop = TRUE,
  leftlabs = "Contrast to Placebo")
 ### Use previous settings
settings.meta(oldset)
### Use previous settings
settings.meta(oldset)