Results from studies examining the effectiveness of coaching on the performance on the Scholastic Aptitude Test (SAT).

dat.kalaian1996

Format

The data frame contains the following columns:

idnumericrow (effect) id
studycharacterstudy identifier
yearnumericpublication year
n1inumericnumber of participants in the coached group
n2inumericnumber of participants in the uncoached group
outcomecharactersubtest (verbal or math)
yinumericstandardized mean difference
vinumericcorresponding sampling variance
hrsnumerichours of coaching
etsnumericstudy conducted by the Educational Testing Service (ETS) (0 = no, 1 = yes)
homeworknumericassignment of homework outside of the coaching course (0 = no, 1 = yes)
typenumericstudy type (1 = randomized study, 2 = matched study, 3 = nonequivalent comparison study)

Details

The effectiveness of coaching for the Scholastic Aptitude Test (SAT) has been examined in numerous studies. This dataset contains standardized mean differences comparing the performance of a coached versus uncoached group on the verbal and/or math subtest of the SAT. Studies may report a standardized mean difference for the verbal subtest, the math subtest, or both. In the latter case, the two standardized mean differences are not independent (since they were measured in the same group of subjects). The number of hours of coaching (variable hrs), whether the study was conducted by the Educational Testing Service (variable ets), whether homework was assigned outside of the coaching course (variable homework), and the study type (variable type) may be potential moderators of the treatment effect.

Note

The dataset was obtained from Table 1 in Kalaian and Raudenbush (1996). However, there appear to be some inconsistencies between the data in the table and those that were actually used for the analyses (see ‘Examples’).

Source

Kalaian, H. A., & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1(3), 227–235. https://doi.org/10.1037/1082-989X.1.3.227

Concepts

education, standardized mean differences, multivariate models, meta-regression

Examples

### copy data into 'dat' and examine data
dat <- dat.kalaian1996
head(dat, 12)
#>    id                 study year n1i n2i outcome    yi     vi  hrs ets homework type
#> 1   1 Alderman & Powers (A) 1980  28  22  verbal  0.22 0.0817  7.0   1        1    1
#> 2   2 Alderman & Powers (B) 1980  39  40  verbal  0.09 0.0507 10.0   1        1    1
#> 3   3 Alderman & Powers (C) 1980  22  17  verbal  0.14 0.1045 10.5   1        1    1
#> 4   4 Alderman & Powers (D) 1980  48  43  verbal  0.14 0.0442 10.0   1        1    1
#> 5   5 Alderman & Powers (E) 1980  25  74  verbal -0.01 0.0535  6.0   1        1    1
#> 6   6 Alderman & Powers (F) 1980  37  35  verbal  0.14 0.0557  5.0   1        1    1
#> 7   7 Alderman & Powers (G) 1980  24  70  verbal  0.18 0.0561 11.0   1        1    1
#> 8   8 Alderman & Powers (H) 1980  16  19  verbal  0.01 0.1151 45.0   1        1    1
#> 9   9      Evans & Pike (A) 1973 145 129  verbal  0.13 0.0147 21.0   1        1    1
#> 10 10      Evans & Pike (A) 1973 145 129    math  0.12 0.0147 21.0   1        1    1
#> 11 11      Evans & Pike (B) 1973  72 129  verbal  0.25 0.0218 21.0   1        1    1
#> 12 12      Evans & Pike (B) 1973  72 129    math  0.06 0.0216 21.0   1        1    1

### load metafor package
library(metafor)

### check ranges
range(dat$yi[dat$outcome == "verbal"]) # -0.35 to 0.74 according to page 230
#> [1] -0.38  0.74
range(dat$yi[dat$outcome == "math"])   # -0.53 to 0.60 according to page 231
#> [1] -0.53  0.60

### comparing this with Figure 1 in the paper reveals some discrepancies
par(mfrow=c(1,2), mar=c(5,5,1,3.4))
plot(log(dat$hrs[dat$outcome == "verbal"]), dat$yi[dat$outcome == "verbal"],
     pch=19, col=rgb(0,0,0,.4), xlab="Log(Coaching Hours)", ylab="Effect Size (verbal)",
     xlim=c(1,6), ylim=c(-0.5,1), xaxs="i", yaxs="i")
abline(h=c(-0.5,0,0.5), lty="dotted")
abline(v=log(c(5,18)),  lty="dotted")
plot(log(dat$hrs[dat$outcome == "math"]), dat$yi[dat$outcome == "math"],
     pch=19, col=rgb(0,0,0,.4), xlab="Log(Coaching Hours)", ylab="Effect Size (math)",
     xlim=c(1,6), ylim=c(-1.0,1), xaxs="i", yaxs="i")
abline(h=c(-0.5,0,0.5), lty="dotted")
abline(v=log(c(5,18)),  lty="dotted")


### construct variance-covariance matrix assuming rho = 0.66 for effect sizes
### corresponding to the 'verbal' and 'math' outcome types
V <- vcalc(vi, cluster=study, type=outcome, data=dat, rho=0.66)

### fit multivariate random-effects model
res <- rma.mv(yi, V, mods = ~ 0 + outcome,
              random = ~ outcome | study, struct="UN",
              data=dat, digits=3)
res
#> 
#> Multivariate Meta-Analysis Model (k = 67; method: REML)
#> 
#> Variance Components:
#> 
#> outer factor: study   (nlvls = 47)
#> inner factor: outcome (nlvls = 2)
#> 
#>            estim   sqrt  k.lvl  fixed   level 
#> tau^2.1    0.012  0.110     29     no    math 
#> tau^2.2    0.003  0.051     38     no  verbal 
#> 
#>         rho.math  rho.vrbl    math  vrbl 
#> math           1                 -    20 
#> verbal    -1.000         1      no     - 
#> 
#> Test for Residual Heterogeneity:
#> QE(df = 65) = 72.163, p-val = 0.253
#> 
#> Test of Moderators (coefficients 1:2):
#> QM(df = 2) = 18.129, p-val < .001
#> 
#> Model Results:
#> 
#>                estimate     se   zval   pval  ci.lb  ci.ub      
#> outcomemath       0.138  0.043  3.178  0.001  0.053  0.223   ** 
#> outcomeverbal     0.117  0.034  3.460  <.001  0.051  0.183  *** 
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 

### test whether the effect differs for the math and verbal subtest
anova(res, X=c(1,-1))
#> 
#> Hypothesis:                                   
#> 1: outcomemath - outcomeverbal = 0 
#> 
#> Results:
#>    estimate    se  zval  pval   
#> 1:    0.021 0.049 0.433 0.665   
#> 
#> Test of Hypothesis:
#> QM(df = 1) = 0.187, p-val = 0.665
#> 

### log-transform and mean center the hours of coaching variable
dat$loghrs <- log(dat$hrs) - mean(log(dat$hrs), na.rm=TRUE)

### fit multivariate model with log(hrs) as moderator
res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:loghrs,
              random = ~ outcome | study, struct="UN",
              data=dat, digits=3)
#> Warning: 2 rows with NAs omitted from model fitting.
res
#> 
#> Multivariate Meta-Analysis Model (k = 65; method: REML)
#> 
#> Variance Components:
#> 
#> outer factor: study   (nlvls = 46)
#> inner factor: outcome (nlvls = 2)
#> 
#>            estim   sqrt  k.lvl  fixed   level 
#> tau^2.1    0.015  0.123     28     no    math 
#> tau^2.2    0.001  0.037     37     no  verbal 
#> 
#>         rho.math  rho.vrbl    math  vrbl 
#> math           1                 -    19 
#> verbal    -1.000         1      no     - 
#> 
#> Test for Residual Heterogeneity:
#> QE(df = 61) = 67.958, p-val = 0.252
#> 
#> Test of Moderators (coefficients 1:4):
#> QM(df = 4) = 23.646, p-val < .001
#> 
#> Model Results:
#> 
#>                       estimate     se   zval   pval   ci.lb  ci.ub     
#> outcomemath              0.102  0.049  2.088  0.037   0.006  0.197   * 
#> outcomeverbal            0.110  0.035  3.166  0.002   0.042  0.178  ** 
#> outcomemath:loghrs       0.169  0.073  2.335  0.020   0.027  0.312   * 
#> outcomeverbal:loghrs     0.049  0.046  1.068  0.285  -0.041  0.139     
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 

### fit model with tau2 = 0 for outcome verbal (which also constrains rho = 0)
res <- rma.mv(yi, V, mods = ~ 0 + outcome + outcome:loghrs,
              random = ~ outcome | study, struct="UN", tau2=c(NA,0),
              data=dat, digits=3)
#> Warning: 2 rows with NAs omitted from model fitting.
res
#> 
#> Multivariate Meta-Analysis Model (k = 65; method: REML)
#> 
#> Variance Components:
#> 
#> outer factor: study   (nlvls = 46)
#> inner factor: outcome (nlvls = 2)
#> 
#>            estim   sqrt  k.lvl  fixed   level 
#> tau^2.1    0.021  0.145     28     no    math 
#> tau^2.2    0.000  0.000     37    yes  verbal 
#> 
#>         rho.math  rho.vrbl    math  vrbl 
#> math           1                 -    19 
#> verbal     0.000         1     yes     - 
#> 
#> Test for Residual Heterogeneity:
#> QE(df = 61) = 67.958, p-val = 0.252
#> 
#> Test of Moderators (coefficients 1:4):
#> QM(df = 4) = 23.350, p-val < .001
#> 
#> Model Results:
#> 
#>                       estimate     se   zval   pval   ci.lb  ci.ub      
#> outcomemath              0.107  0.051  2.103  0.035   0.007  0.207    * 
#> outcomeverbal            0.114  0.034  3.396  <.001   0.048  0.180  *** 
#> outcomemath:loghrs       0.187  0.076  2.463  0.014   0.038  0.337    * 
#> outcomeverbal:loghrs     0.060  0.044  1.357  0.175  -0.027  0.147      
#> 
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>